
International Journal of Computer Trends and Technology Volume 67 Issue 2, 60- 64, February 2019

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V67I2P109 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Comparison of Encryption Algorithms during

Data Transmission at Rest and in Transit

P. Rajesh Kannan
1
, R. Mala

2
,

1
Research Scholar, Dept. Of Computer Science, MarudhuPandiyar College, Thanjavur, Tamilnadu, India.

2
Assistant Professor, Dept. Of Computer Science, Alagappa University College of Arts and Science,

Paramakudi, India

Abstract - Securing sensitive data in databases has

become very important nowadays because of the

unencrypted form of unstructured data. Most open-

source databases handle a huge amount of data in an

unencrypted format accessible to anyone. Database

operations such as read, edit, update, and delete are

performed on the databases while in transit and rest.

This paper proposes a secure encryption algorithm

used to increase the packet delivery ratio and

Throughput compared with the existing encryption

algorithm used to encrypt the data at transit and rest.

Compared with the existing algorithm, the average

Throughput and packet delivery ratio results in a

more secure algorithm with the validated results.

Keywords - Encryption, data at transit, Throughput,

packet delivery ratio, No SQL databases

I. INTRODUCTION

 Whether they handle the data in the industry, in

business, or person wants to secure their sensitive

data like adhar number, account numbers, PINs, etc.

When databases store their unstructured data, they

become larger due to the increasing demands for

updated data to be maintained for future references.

Nowadays, people move onto the NoSQL databases

for the easy handling of the database operations such

as read, update, edit and delete [1]. Due to the open

nature of the NoSQL databases, anyone can view the

details in the databases since they are not encrypted.

Secure handling of private data has become very

important nowadays in databases. Relational

databases are securing their data with additional

efforts provided along with the database. Data

security is maintained by the Data Base

Administrators (DBA) depending on the level of

security needed by the concern. The huge storage of

unstructured data on various mediums has become

difficult to handle with the help of relational

databases like SQL databases [2]. To handle these

kinds of unstructured data, NoSQL(Not only SQL)

databases are available as open-source databases like

MongoDB, Cassandra, Redis, Hypertable, CouchDb,

etc. Most open-source databases are not built with

complete data security [3].

Hariharan et al. [4] discuss the various encryption

techniques on the databases. This author surveyed

different encryption methods like A Database Record

Encryption Scheme Using the RSA Public Key

Cryptosystem and its Master Keys, Chip-Secured

Data Access: Confidential Data on Untrusted Servers,

Fast and Secure Encryption for Indexing in a

Column-Oriented DBMS, The Transport Layer

Security (TLS) Protocol Version 1.2, etc. These

suggested techniques differ based on their

performance, access time, and key management [15].

In this paper, section ii elaborates on the related

works by various authors in this field of encryption

standards for database security. Section iii compares

the various algorithms and methodologies used to

encrypt the private data in databases to prevent

unauthorized access to data. The proposed new

algorithm called E-TDE is explained, and the

improved packet delivery ratio is reported when data

is at rest. Section IV explores the results and

discussions based on the performance of the proposed

E-TDE algorithm while used in the transit of data

among the databases. Section v gives the conclusion

based on the proposed methods.

II LITERATURE REVIEW

 Data is to be protected when they are handled

during the transit of the data, as well as they are at

rest in the databases. Application-level security is to

be adopted in some cases to secure the whole

database carefully. Most the NoSQL databases do not

provide encryption methods to protect the data.

Databases contain all types of data to the user,

whether sensitive or not.

For securing data in motion, all versions of

MongoDB support TLS (Transport Layer Security)

and SSL (Secure Socket Layer) to transfer the data

over networks. This type of encryption technique is

commonly used to secure website traffic and file

sharing. While in transit, when the data travels from

one point to another, it is unencrypted or 'in the

clear .'MongoDB provides asymmetric key protocols

to configure and secure the data in motion [12]. One

of the challenges for MongoDB users is that when

sensitive information is added to the database, users

have to adopt a safe strategy of encrypting the

P. Rajesh Kannan & R. Mala / IJCTT, 67(2), 60-64, 2019

61

sensitive data in the MongoDB database with proper

key management.

MongoDB Enterprise offers a storage-based file

symmetric key encryption called Transparent Data

Encryption (TDE) to encrypt the whole database files

at the storage level. Version 3.2, MongoDB utilizes

the Advanced Encryption Standard (AES) 256-bit

encryption algorithm, an encryption cipher that uses

the same secret key to encrypt and decrypt data [13].

But data at rest encryption is only available on

MongoDB enterprise and atlas editions using the

required Wired Tiger storage engine [14].

When TDE is used to encrypt the data, a unique,

private key is generated. Each encrypted database file

generates a new private symmetric key, and all keys

in the storage device are encrypted using a master key.

MongoDB never allows the master key to be stored

on the same server as the encrypted data [5]. The

security admin or the database must identify a secure

storage location for the encryption key. MongoDB

recommends third-party enterprise key management

solutions; however, users can store the key locally

using a key file. But according to the best practices,

storing the key locally is risky and almost not

recommended for key protection [6].

For securing data sensitive to the user and concern,

they must be encrypted so that intruders or unknown

persons do not intentionally tap them. The user adopts

certain encryption methods to protect sensitive data

when the data is at rest. When the data is transmitted

from one storage area to the other, there is a need to

protect the data during transit [7]. The basic

operations such as read, write, append, update, edit

and delete operations can be performed with the

encryption method.

 The data set is often the result of an individual's or

organization's work, and protection of intellectual

property rights becomes increasingly important.

Watermarking and fingerprinting are some

mechanisms to prevent unauthorized access to data

sets [8]. Kurapati Sundar Teja et al. [9] explain the

encryption-decryption methods, compare the

performance with the popular encryption algorithms,

and suggest a new design called FGPA.

III. COMPARISON OF ENCRYPTION

METHODS

 Among the various encryption methods suggested

by various authors provide a few encryption methods

to prevent unauthorized access to users' sensitive data

[10]. Most databases do not provide encryption

methods to protect the data set; there is a need to

propose a standard procedure or encryption

algorithms to access the data safely and securely [11].

The TDE algorithm is analyzed and compared with

this paper's new proposed E-TDE algorithm. This

proposed algorithm is used to encrypt the data, and

the performance of the database is improved based on

the packet delivery ratio and Throughput. This

algorithm uses the RSA algorithm, one of the

standard algorithms used to improve security for the

database by providing encryption for the database

operations during transit and at rest.

A. Encryption at rest

The comparison has been done with the

existing TDE algorithm and proposed E-TDE. The

following quantitative parameters are used to evaluate

the performance of the E-TDE as follows:

B. Packet Delivery Ratio (PDR)

 It defines the percentage of the total number of

packets received at the destination and divided by the

number of packets is sent by the source, as shown in

Figure 1. Packet Delivery Ratio is calculated as

follows:

100

sentpacketsdataNo.of

receivedpacketsdataNo.of
PDR 

Table 1. Packet Delivery Ratio- Documents inserted at rest

Number of

Documents

Inserted

5 15 25 35 50

No. Of

Documents

(in %)

TDE 87.6 87.9 90.1 91.2 93.4

E-

TDE
88.8 89.5 92.3 93.4 95.7

 Figure 2 shows PDR when data is at rest. For a

file size of 5MB, the TDE increases PDR by 87.6%,

whereas the proposed E-TDE increases PDR by

88.8%. For a file size of 15MB, the TDE increases

PDR by 87.9%, whereas the proposed E-TDE

increases PDR by 89.5%. For a file size of 25MB, the

TDE increases PDR by 90.1%, whereas E-TDE

increases PDR by 92.3%. For a file size of 35MB, the

TDE increases PDR by 91.2%, whereas E-TDE

increases PDR by 93.4%. For a file size of 50MB, the

TDE increases PDR by 93.4%, whereas E-TDE

increases 95.7%.

80

85

90

95

100

5 15 25 35 50

P
a
c
k

e
t
D

e
li

v
er

y
 R

a
ti

o
 (

in

%
)

Documents Not Encrypted

TDE

E-TDE

Fig. 2 Packet Delivery Ratio when data at rest

P. Rajesh Kannan & R. Mala / IJCTT, 67(2), 60-64, 2019

62

B. Encryption during transit of data

 The data is transmitted among various sources

and destinations during the usage of data extraction.

The data manipulations such as insertion, edit,

updation, and deletion of data are usually done on the

data set during the transit. The packet delivery ratio is

increased compared with TDE, which improves the

performance of the database operations.

Table 2: Packet Delivery Ratio for Encryption at Transit

88

90

92

94

96

98

100

5 15 25 35 50

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
in

%
)

Number of Documents Inserted with

Encryption at Transist

TDE

E-TDE

Fig. 3 Packet Delivery Ratio with Encryption at Transit

 Figure 3 shows PDR with a different number of

documents. For a file size of 5MB, the TDE increases

PDR by 91.6%, whereas the proposed E-TDE

increases PDR by 99.2%. For a file size of 15MB, the

TDE increases PDR by 92.09%, whereas the

proposed E-TDE increases PDR by 93.78%. For a file

size of 25MB, the TDE increases PDR by 94.15%,

whereas E-TDE increases PDR by 96.15%. For a file

size of 35MB, the TDE increases PDR by 93.12%,

whereas E-TDE increases PDR by 95.12%. For a file

size of 50MB, the TDE increases PDR by 96.2%,

whereas E-TDE increases 98.72%.

IV RESULTS AND DISCUSSION

 The results of the application of the E-TDE

algorithm are validated concerning two important

parameters, namely, packet delivery ratio and

Throughput. Compared to the TDE method, E-TDE

shows significant improvement in the performance of

the database operations when the data is at rest and in

transit. This proposed encryption method improves

the security of the database to a greater extent.

A. Packet Delivery Ratio

 The proposed E-TDE method increases the

Packet Delivery ratio when data is at rest. Figure 4

shows that the average PDR is increased by the

proposed E-TDE concerning documents at the resting

stage. When the file size increases, PDR also

increases by the proposed E-TDE while documents

are at rest.

89.5
90

90.5
91

91.5
92

92.5

TDE E-TDE

A
v

e
r
a

g
e
 P

a
c
k

e
t

D
e
li

v
e
r
y

R
a

ti
o

(i
n

 %
)

Algorithms

Fig. 4 Comparison of Average Packet Delivery Ratio with

encryption at rest

 Figure 5 shows that the average PDR is increased

by the proposed E-TDE concerning the different

number of documents. When the file size increases,

PDR also increases by the proposed E-TDE. The

results show that the proposed E-TDE significantly

enhances PDR in the NoSQL database.

Fig. 5 Comparison of Average Packet Delivery Ratio with

Encryption at Transit

B. Throughput

 Throughput is one of the important parameters

used to measure the performance of the database

operations. It defines the average of successful

message delivery over a communication channel.

Throughput is calculated as follows:

Throughput = File Size / Transmission Time

1. Throughput - Documents at rest

Table 3. Throughput - Documents at rest

Number of

Documents Inserted
5 15 25 35 50

Average
Throughput

(in Mbps)

TDE 18.84 10.14 9.30 6.5 5.4

E-
TDE

19.65 11.96 11.80 10.80 9.7

TDE produces 18.84Mbps Throughput, and

the E-TDE produces 19.65Mbps Throughput for a

5MB file size. It is also simulated for 15MB, TDE

Number of

Documents

Inserted

5 15 25 35 50

No. of

Documents

(in %)

TDE 91.6 93.12 94.15 95.18 96.2

E-

TDE
92.09 93.78 94.66 96.96 98.72

P. Rajesh Kannan & R. Mala / IJCTT, 67(2), 60-64, 2019

63

provides 10.14 Mbps Throughput, the E-TDE

11.96Mbps, for 25MB, the TDE produces 9.30Mbps

Throughput, and the E-TDE produces 11.80 Mbps

throughput. For a file size of 35MB, the TDE

increases Throughput by 6.5Mbps, whereas E-TDE

increases throughput by 10.80%. For a file size of

50MB, the TDE increases Throughput by 5.4Mbps,

whereas E-TDE increases throughput by 9.7%.

0

5

10

15

20

25

5 25 50

T
h
ro

u
g
h
p

u
t

(i
n

 M
b

p
s)

Documents at rest

TDE

Fig. 6 Throughput with data at rest

 Figure 7 shows that the average Throughput is

increased by the proposed E-TDE concerning

documents not encrypted stage. When the file size

increases, Throughput increases by the proposed E-

TDE while documents are not encrypted.

0

5

10

15

TDE E-TDE

A
v
er

ag
e

T
h

ro
u

g
h

p
u

t
(i

n

M
b

p
s)

Algorithms

Fig. 7 Comparison of Average Throughput with data at rest

2. Throughput - Documents at transit

Table 4. Documents Encryption at Transit for Throughput

Number of

Documents Inserted
5 15 25 35 50

Average

Throughput
(in Mbps)

TDE 20.64 14.12 15.25 12.5 9.5

E-
TDE

24.75 16.14 18.38 19.47 12.14

TDE produces 20.64Mbps Throughput, and

the E-TDE produces 24.75Mbps Throughput for a

5MB file size. It is also simulated for 15MB, TDE

provides 14.12 Mbps Throughput, the E-TDE

16.14Mbps, for 25MB, the TDE produces 15.25Mbps

Throughput, and E-TDE produces 18.38 Mbps

throughput. For a file size of 35MB, the TDE

increases Throughput by 12.5Mbps, whereas E-TDE

increases throughput by 19.47%. For a file size of

50MB, the TDE increases Throughput by 9.5Mbps,

whereas E-TDE increases throughput by 12.14%.

0

10

20

30

5 25 50

T
h
ro

u
g
h
p

u
t

(i
n

M
b

p
s)

Documents at rest

TDE

E-TDE

Fig. 8 Throughput with Encryption at Transit

 Figure 9 shows that the average Throughput is

increased by the proposed E-TDE concerning

documents encryption at the transited stage. When the

file size increases, Throughput also increases by the

proposed E-TDE while document encryption is at the

transited stage.

0

5

10

15

20

25

TDE E-TDE

A
v

e
ra

g
e
 T

h
ro

u
g
h

p
u

t
(i

n

M
b

p
s)

Algorithms

Fig. 9 Comparison of Average Throughput with

Encryption at Transit

V. CONCLUSION

 Encryption is one of the important techniques used

to protect individual or enterprise data. Since most of

the NoSQL databases do not provide adequate

security in protecting the user's private data, intruders

easily get access to the private data. There is a serious

demand for secure access to data in databases

provided with encryption methods. This paper

proposes one encryption algorithm called E-TDE that

is used to improve the performance of the database.

This significant approach increases the total security

of the user's valuable data from unauthorized users.

The packet delivery ratio and Throughput are

improved compared with the TDE algorithm, and the

results are validated and reported. In the future,

various combined methodologies can be adapted to

improve the secure access of users' private data.

REFERENCES

[1] Jef Van Loon, Prof. Dr. C-C. Kanne, Ch. Sturm, "Database

Security - Concepts, Approaches," Article in IEEE

Transactions on Dependable and Secure Computing ·

Seminar in Database Systems, University of Zurich,

P. Rajesh Kannan & R. Mala / IJCTT, 67(2), 60-64, 2019

64

Department of Informatics, Autumn Term 2008, DOI:

10.1109/TDSC.2005.9 · Source: IEEE Xplore.
[2] Mubina Malik and Trisha Patel, "DATABASE SECURITY -

ATTACKS AND CONTROL METHODS," International

Journal of Information Sciences and Techniques (IJIST)
Vol.6, No.1/2, March 2016.

[3] P. Rajesh kannan1, R. Mala2, “comparison of encryption

algorithms on NoSQL databases," International Journal of
Computer Sciences and Engineering, Vol.-6, Issue-10, Oct

2018.

[4] P.R.Hariharan & Dr. K.P. Thooyamani, Various Schemes for
Database Encryption - A Survey", International Journal of

Applied Engineering Research ISSN 0973-4562 Volume 12,

Number 19 (2017) pp. 8763-8767, Research India
Publications.

[5] https://docs.mongodb.com/manual/core/security-encryption-

at-rest.
[6] Suna Yin, Dehua Chen, Jiajin Le, China, 2016 IEEE,

"STNOSQL Creating NOSQL Database on the Sensible

Things Platform.

[7] E. Bertino and R. Sandhu. Database security - concepts,

approaches, and challenges.Dependable and Secure

Computing, IEEE Transactions on, 2(1):2–19, March 2005.
[8] Shelly Rohilla, Pradeep Kumar Mittal, Database Security:

Threats and Challenges, International Journal of Advanced

Research in Computer Science and Software Engineering,
Volume 3, Issue 5, May 2013.

[9] Kurapati Sundar Teja et al. “ Data Encryption and Decryption
Algorithm Using Hamming Code and Arithmetic

Operations," Int. Journal of Engineering Research and

Applications Vol. 5, Issue 8, (Part - 1) August 2015, pp.81-82
[10] Vinod Shokeen, Niranjan Yadav, "Encryption and Decryption

Technique for Message Communication," International

Journal of Electronics & Communication Technology, Vol. 2,
Issue 2, June 2011, pp. 80-83.

[11] Obaida Mohammad Awad Al-Hazaimeh, "A New Approach

For Complex Encrypting and Decrypting Data," International
Journal Of Computer Networks & Communications (IJCNC)

Vol.5, No.2, March 2013, pp. 95-103.

[12] D. Kulkarni. A fine-grained access control model for key-
value systems. Proceedings of the third ACM conference on

data and application security and privacy pages 161–164.

ACM, 2013
[13] P. Colombo and E. Ferrari. Enhancing MongoDB with

Purpose Based Access Control. In IEEE Transactions on

Dependable and Secure Computing, November 2015
DOI:10.1109/TDSC.2015.2497680

[14] Boyu Hou, Kai Qian, Lei Li, Yong Shi, Lixin Tao, Jigang

Liu, USA, 2016 IEEE 3rd International Conference on Cyber

Security and Cloud Computing, "Mongo Database NOSQL

Injection Analysis and Detection."

[15] Anil Kumar, Harsha H L, B. Swaroop Reddy, K.Sunil Kumar
Reddy, Krishna N, "Homomorphic Encrypted MongoDB for

Users Data Security," International Journal of Engineering

Research in Computer Science and Engineering (IJERCSE)
Vol 5, Issue 6, June 2018

https://docs.mongodb.com/manual/core/security-encryption-at-rest
https://docs.mongodb.com/manual/core/security-encryption-at-rest

